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Preface

This book is a very different type of mathematics textbook. Because of this, users new to it, and
its companion books that form the Discovering the Art of Mathematics library1, need context
for the book’s purpose and what it will ask of those that use it. This preface sets this context,
addressing first the Explorers (students), then both Explorers and Guides (teachers) and finishing
with important information for the Guides.

0.1 Notes to the Explorer

“Explorer?”

Yes, that’s you - an Explorer. And these notes are for you.

We could have addressed you as “reader,” but this is not a book intended to be read like a
traditional book. This book is really a guide. It is a map. It is a route of trail markers along a
path through part of the vast world of mathematics. This book provides you, our explorer, our
heroine or hero, with a unique opportunity to explore - to take a surprising, exciting, and beautiful
journey along a meandering path through a great mathematical continent.

“Surprising?” Yes, surprising. You will be surprised to be doing real mathematics. You will
not be following rules or algorithms, nor will you be parroting what you have been dutifully shown
in class or by the text. Unlike most mathematics textbooks, this book is not a transcribed lecture
followed by exercises that mimic examples laid out for you to ape. Rather, the majority of each
chapter is made up of Investigations. Each chapter has an introduction as well as brief surveys
and narratives as accompaniment, but the Investigations form the heart of this book. They are
landmarks for your expedition. In the form of a Socratic dialogue, the Investigations ask you to
explore. They ask you to discover mathematics. This is not a sightseeing tour, you will be the
active one here. You will see mathematics the only way it can be seen, with the eyes of the mind
- your mind. You are the mathematician on this voyage.

“Exciting?” Yes, exciting. Mathematics is captivating, curious, and intellectually compelling
if you are not forced to approach it in a mindless, stress-invoking and mechanical manner. In
this journey you will find the mathematical world to be quite different from the static barren
landscape most textbooks paint it to be. Mathematics is in the midst of a golden age - more
mathematics is being discovered now than at any time in its long history. Each year there are
50,000 mathematical papers and books that are reviewed for Mathematical Reviews! Fundamental
questions in mathematics - some hundreds of years old and others with $ 1 Million prizes - are

1All available freely online at http://artofmathematics.org/books.
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being solved. In the time period between when these words were written and when you read them
important new discoveries adjacent to the path laid out here have been made.

“Beautiful?” Yes, beautiful. Mathematics is beautiful. It is a shame, but most people finish
high school after 10 - 12 years of mathematics instruction and have no idea that mathematics
is beautiful. How can this happen? Well, they were busy learning arithmetical and quantitative
skills, statistical reasoning, and applications of mathematics. These are important, to be sure. But
there is more to mathematics than its usefulness and utility. There is its beauty. And the beauty of
mathematics is perhaps its most powerful, driving force. As the famous Henri Poincaré (French
mathematician; 1854 - 1912) said:

The mathematician does not study pure mathematics because it is useful; [s]he studies
it because [s]he delights in it and [s]he delights in it because it is beautiful.

Mathematics plays a dual role as a liberal art and as a science. As a powerful science, it shapes
our technological society and serves as an indispensable tool and as a language in many fields. But
it is not our purpose to explore these roles of mathematics here. This has been done in other fine,
accessible books. Instead, our purpose is to journey down a path that values mathematics for its
long tradition as a cornerstone of the liberal arts.

Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.). It was a
central concern of the great Greek philosophers like Plato (Greek philosopher; 427 - 347 B.C.).
During the Dark Ages, classical knowledge was preserved in monasteries. The classical liberal
arts organized knowledge in two components: the quadrivium (arithmetic, music, geometry, and
astronomy) and the trivium (grammar, logic, and rhetoric) which were united by philosophy.
Notice the central role of mathematics in both components. During the Renaissance and the Sci-
entific Revolution the importance of mathematics as a science increased dramatically. Nonetheless,
it also remained a central component of the liberal arts during these periods. Indeed, mathematics
has never lost its place within the liberal arts except in contemporary classrooms and textbooks
where the focus of attention has shifted solely to its utilitarian aspects. If you are a student of the
liberal arts or if you want to study mathematics for its own sake, you should feel more at home
on this expedition than in other mathematics classes.

“Surprise, excitement, and beauty? Liberal arts? In a mathematics textbook?” Yes. And
more!

In your exploration here you will see that mathematics is a human endeavor with its own rich
history of struggle and accomplishment. You will see many of the other arts in non-trivial roles:
art, music, dance and literature. There is also philosophy and history. Students in the humanities
and social sciences, you should feel at home here too. There are places in mathematics for anyone
to explore, no matter their area of interest.

The great Betrand Russell (English mathematician and philosopher; 1872 - 1970) eloquently
observed:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of paintings or music, yet sublimely pure and
capable of a stern perfection such as only the greatest art can show.

We hope that your discoveries and explorations along this mathematical path will help you glimpse
some of this beauty. And we hope they will help you appreciate Russell’s claim:

2
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. . . The true spirit of delight, the exultation, the sense of being more than [hu]man,
which is the touchstone of the highest excellence, is to be found in mathematics as
surely as in poetry.

Finally, we hope that your discoveries and explorations enable you to make mathematics a part of
your lifelong educational journey. For, in Russell’s words once again:

. . . What is best in mathematics deserves not merely to be learned as a task but to be
assimilated as a part of daily thought, and brought again and again before the mind
with ever-renewed encouragement.

Bon voyage. May your journey be as fulfilling and enlightening as those that have beaconed
people to explore the many continents of mathematics throughout humankind’s history.

0.2 Navigating This Book

Intrepid Explorer, as you ready to begin your journey, it may be helpful for us to briefly describe
basic customs used throughout this book.

As noted in the Preface, the central focus of this book is the Investigations. They are the
sequences of problems that will help guide you on your active exploration of mathematics. In each
chapter the Investigations are numbered sequentially in bold. Your role will be to work on these
Investigation individually or cooperatively in groups, to consider them as part of homework assign-
ments, to consider solutions to selected Investigations that are modeled by your fellow explorers -
peers or your teacher - but always with you in an active role.

If you are stuck on an Investigation remember what Frederick Douglass (American slave,
abolitionist, and writer; 1818 - 1895) told us:

If there is no struggle, there is no progress.

Or what Shelia Tobias (American mathematics educator; 1935 - ) tells us:

There’s a difference between not knowing and not knowing yet.

Keep thinking about the problem at hand, or let it ruminate a bit in your subconscious, think about
it a different way, talk to peers, or ask your teacher for help. If you want you can temporarily
put it aside and move on to the next section of the chapter. The sections are often somewhat
independent.

Independent Investigations are so-called to point out that the task is more involved than
the typical Investigations. They may require more significant mathematical epiphanies, additional
research outside of class, or a significant writing component. They may also signify an opportunity
for class discussion or group reporting once work has reached a certain stage of completion.

The Connections sections are meant to provide illustrations of the important connections
between the mathematics you’re exploring and other fields - especially in the liberal arts. Whether
you complete a few of the Connections of your choice, all of the Connections in each section, or
are asked to find your own Connections is up to your teacher. We hope that these Connections
sections will help you see how rich mathematics’ connections are to the liberal arts, the fine arts,
culture, and the human experience.
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Further Investigations, when included, are meant to continue the Investigations of the math-
ematical territory but with trails to significantly higher ground. Often the level of sophistication
of these investigations will be higher. Additionally, our guidance will be more cursory - you are
bushwhacking on less well-traveled trails.

In mathematics, proof plays an essential role. Proof is the arbiter for establishing truth and
should be a central aspect of the sense-making at the heart of your exploration. Proof is reliant on
logical deductions from agreed upon definitions and axioms. However, different contexts suggest
different degrees of formality. In this book we use the following conventions regarding definitions:

• An Undefined Term is italicized the first time it is used. This signifies that the term is: a
standard technical term which will not be defined and may be new to the reader; a term
that will be defined a bit later; or an important non-technical term that may be new to the
reader, suggesting a dictionary consultation may be helpful.

• An Informal Definition is italicized and bold- faced the first time it is used. This signifies
that an implicit, non-technical, and/or intuitive definition should be clear from context.
Often this means that a formal definition at this point would take the discussion too far
afield or be overly pedantic.

• A Formal Definition is bolded the first time it is used. This is a formal definition that is
suitably precise for logical, rigorous proofs to be developed from the definition.

In each chapter the first time a Biographical Name appears it is bolded and basic biographical
information is included parenthetically to provide historical, cultural, and human connections.

In mapping out trails for your explorations of this fine mathematical continent we have tried
to uphold the adage of George Bernard Shaw (Irish playwright and essayist; 1856 - 1950):

I am not a teacher: only a fellow-traveler of whom you asked the way. I pointed ahead
– ahead of myself as well as you.

We wish you wonderful explorations. May you make great discoveries, well beyond those we could
imagine.

0.3 Directions for the Guides

Faithful Guide, you have already discovered great surprise, beauty and excitement in mathematics.
This is why you are here. You are embarking on a wonderful journey with many explorers looking
to you for bearings. You’re being asked to lead, but in a way that seems new to many.

We believe telling is not teaching. Please don’t tell them. Answer their questions with ques-
tions. They may protest, thinking that listening is learning. But we believe it is not.

This textbook is very different from typical mathematics textbooks in terms of structure (only
questions, no explanations) and also of expectations it places on the students. They will likely
protest, ”We’re supposed to figure this out? But you haven’t explained anything yet!” It is
important to communicate this shift in expectations to the students and explain some of the
reasons. That’s why we have written the earlier sections of this preface, which can help do the
explaining for us (and for you).

4



DRAFT c© 2016 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

You need support as well. A shift in pedagogy to a more inquiry-based approach may be
subtle for some, but for many it is a great leap. Understanding this we have assembled an online
resource to support teachers in the creation and nurturing of successful inquiry-based mathematics
classrooms. Available online at http://artofmathematics.org/classroom it contains a wealth
of information - in many different forms including text, data, videos, sample student work - on
many critical topics:

• Why inquiry-based learning?

• How to get started using our books. . .

• A culture of curiosity

• Learning contracts

• Grouping students

• Choosing materials - Mixing It Up

• Asking good questions

• Creating inquiry-based activities

• Making mistakes

• Cool things

• Proof as sense-making

• Homework stories

• Exams

• Posters

• Assessment: Student Solution Sets

• Evaluating the effectiveness of inquiry-
based learning

• . . . and much more . . .

We wrote the books that make up the Discovering the Art of Mathematics library because they
have helped us have the most extraordinary experiences exploring mathematics with students who
thought they hated mathematics and had been disenfranchised from the mathematical experience
by their past experiences. We are encouraged that others have had similar experiences with these
materials. We love to hear success stories and are also interested in hearing about things that
might need to be changed or did not work so well. Please feel free to share your stories and
suggestions with us: http://artofmathematics.org/contact.

0.3.1 Chapter Dependencies

Guides are encouraged to pick and choose topics freely, from this book and others in the Discovering
the Art of Mathematics series, depending on their interests and those of their students. The chapter
dependencies in this book are as follows:

5
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Discovering the Art of Mathematics: Dance

Chapter Dependencies

Chapt. 2 Chapt. 3 Chapt. 4 Chapt. 5 Chapt. 6

All chapters are independent.

6



Chapter 1

A little Introduction

1.1 Mathematics and Dancing

This is a not a regular textbook. This is a book which makes you move and think and write and
discuss. I hope you read the “Notes to the explorer” preface to get a feeling for the spirit..

All chapters in this book are based on movement, as a motivation for the mathematical
questions, as a representation of our strategies and to take a break from hard thinking and relax
our brains. Don’t worry if you don’t like to dance, all the activities are really fun and it is not
about “dancing perfectly”. You will be fine, trust me.

7
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Chapter 2

Symmetry in Mathematics and
Dance

The mathematical sciences particularly exhibit order, symmetry, and limitation; and these
are the greatest forms of the beautiful.

Aristotle (Greek Philosopher; 384 BC - 322 BC)

Figure 2.1: Picture Created with the App iornament

9
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2.1 Moving in Symmetry in the Plane

Symmetry is beautiful. Most people find the balance of symmetry in nature, in architecture, in
visual art, in clothing, etc. pleasing. The Dutch artist M.C. Escher (Dutch Graphic Artist; 1898
- 1972) uses symmetry in many of his beautiful pieces of art, see e.g. https://en.wikipedia.

org/wiki/M._C._Escher. Although he was not a mathematician by training he was inspired by
mathematics and worked with deep mathematical ideas in this artwork. He collaborated with
mathematicians and later published his own mathematical ideas.

Figure 2.1 shows a picture with beautiful rotational symmetry. It was created with the app
iornament, which allows the user to draw their own piece of art while playing with different
symmetries. It is very easy to use (Figure 2.1 was drawn by my 6-year old daughter!) and can
result in incredibly artistic pictures.

You can also look for symmetry in the realm of ideas, of patterns and reasoning – the more
balance there is, the more pleasing a theory, a theorem or a proof is. Choreographers use symmetry
(or the surprising lack thereof) as a stylistic feature in their dance creations. See Figure 2.2 for
some beautiful examples of symmetry in dance compositions.

Figure 2.2: Examples of Symmetry in Dancing: Indian Dance, Estonian Dance, Morris Dancing
and the Jabbawockeez

The goal of this chapter is to look at symmetry in dancing with the eye of a mathematician.
But before we can do this we need some practice with symmetry.

10
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2.2 Switching between Symmetries

2.2.1 The Mirror

Imagine you are standing in front of a mirror.

1. If you move your left arm, which arm is your mirror image going to move?

2. What happens if you move your left leg?

3. And how about turning to the right (clockwise, as viewed form above), away from the mirror,
which way does your mirror image turn?

With a partner, explore this connection: One person is the active person while the other person
is the mirror image who is permanently mirroring the moves. Tape the mirror line on the floor so
you don’t forget where the mirror is. Be creative as the active person, you can move in any way
you want, except moving the mirror line itself.

We call this kind of symmetry reflectional symmetry or mirror symmetry .

4. Which movements are easy for the mirroring person to follow? Give a few examples.

5. Which movements are hard for the mirroring person to follow? Give a few examples.

6. Why do you think some movements are harder to copy than others?

In the last questions you might have noticed that it is difficult to explain some of the positions
in words. How about drawing a picture or a diagram?

7. How would you notate the position of the two dancers as viewed from the side? Give a few
examples.

8. Which information are you missing in the side-view picture?

9. How would you notate the position of the two dancers from above? Give a few examples.

10. Which information are you missing in the top-view picture?

11. Can you draw a picture that shows all the information you need? Why or why not?

2.2.2 Same limbs...

Imagine the following situation: Both dancers face each other in the mirror and lift just their left
arm.

12. Why is the above situation not a mirroring situation? Explain in detail.

We know that we can not use reflectional symmetry to describe the above position in which
both dancers stand facing each other with just their left arms lifted. But clearly it looks and feels
symmetric!

11
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13. Think about the two dancers that face each other and both lift their left hand. Imagine you
could pick up one person and move it around where ever you wanted. How would you move
the person to match exactly with the other person? Act out the movement and describe or
draw the process precisely. What would you call this movement?

We call this kind of symmetry rotational symmetry .

14. Can you imagine why we call it rotational? What is being rotated?

15. And around which point do we rotate?

16. By how many degrees do we rotate?

17. Classroom Discussion: Compare the different representation we used to describe symme-
try in dancing: actually moving, drawing movements, and describing movements in words.
What are advantages and disadvantages of each representation? Do you have a preference?

A student invented the following notation, which will make it easier to show the difference
between reflectional and rotational symmetry. She assumed that both people are facing each other
and drew a circle for each foot and a rectangle for each hand. See Figure (2.3).

Reflectional Rotational

Figure 2.3: Reflectional and Rotational Symmetry Example

Practice with a partner again, this time one person (the follower) following the other (the
leader) in rotational symmetry. Use tape on the floor to mark the point of rotation. Be creative!

18. Which movements are easy for the follower to follow? Give a few examples.

19. Which movements are difficult for the follower to follow? Give a few examples.

20. Why do you think some movements are harder to copy than others?

12
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2.2.3 Switching between two kinds of Symmetry

Now that you know about two kinds of symmetry, we can practice using both. Start with re-
flectional symmetry, agreeing on a place for the mirror. After creating interesting movements for
some time, the leader says “switch”1. Now the follower has to follow in rotational symmetry. But
there is a problem: not in all positions can you switch smoothly between symmetries, meaning
you don’t have to quickly adjust your position.

21. Find a position in which you can not switch smoothly from reflectional to rotational sym-
metry. Explain why.

22. Find several positions in which you can switch from reflectional to rotational symmetry.
Draw the corresponding pictures.

23. Describe all positions in which you can switch from reflectional to rotational symmetry. This
is your conjecture.

If we want to be precise and prove a conjecture in mathematics it is helpful to have precise
language for the definitions and terms we are using.

24. What do you think: where do definitions in mathematics come from? Who creates them and
who decides which ones to use?

25. Is it ok for you to just invent something and call it a definition? Why or why not?

26. Classroom Discussion: In groups and as a whole class find precise definitions for reflec-
tional and rotational symmetry. Compare your definitions and agree as a class on which one
work best for our purpose.

Now you are ready for your first proof2:

27. Describe all positions in which you can switch from reflectional to rotational symmetry.
Justify that you can actually use the positions you found to switch between symmetries.
Explain how you can be sure that you found all of the positions.

2.2.4 Line Dancing

Have you ever seen or done line dancing? There is certainly symmetry involved but it doesn’t
seem to be reflectional or rotational symmetry. Watch a video on youtube when considering the
following questions, e.g. http://www.youtube.com/watch?v=rs5f8CYyLBo3.

28. Explain in detail why the relation between the line dancers in the video shows neither reflec-
tional nor rotational symmetry.

29. Imagine again that you could pick up one of the line dancer and move them wherever. How
would you move the dancer in order to match him or her up precisely with one of their
neighboring dancers? Draw a picture and label clearly how you would move them, how far,
etc.

1This exercise is taken from www.mathdance.org, [13].
2If you want to know more about proofs look at the guide Discovering the Art of Mathematics: Student Toolbox
3Try out the line dance by yourself or in your class!

13

http://www.youtube.com/watch?v=rs5f8CYyLBo


DRAFT c© 2016 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

30. Can you imagine line dances that have reflectional or rotational symmetry? Explain in detail.

The main symmetry you see in a line dance is called translational symmetry . You can imag-
ine sliding or “copying and pasting” a dancer to a different position in the room. The orientation
of the dancer does not change, however.

Again, with a partner, practice following moves in translational symmetry. When you are
comfortable with this, start switching between all three kinds of symmetry.

2.2.5 Switching between three kinds of Symmetry

Now that you know about three kinds of symmetry, we can dance using all of them. Start with
reflectional symmetry, agreeing on a place for the mirror. After creating interesting movements
for some time, the leader says “switch to . . . ”4. The follower has then to follow in the symmetry
called by the leader. But there is a problem: not in all positions can you switch smoothly between
symmetries.

31. Is translational symmetry easier or harder to follow than the others? Explain why.

32. Find a position in which you can not switch from reflectional to translations symmetry.
Explain why.

33. Is there a position in which you can switch from reflectional to translational symmetry.
Explain.

34. Find a position in which you can not switch from rotational to translational symmetry.
Explain why.

35. Is there a position in which you can switch from rotational to translational symmetry. Ex-
plain.

36. Classroom Discussion: What has to be true about positions where we can switch from
one type of symmetry to another? How can we use this to find or describe all the different
positions where such a switch may occur?

37. Independent Investigation: Find at dance clip that you like on youtube.com that
exhibits different kinds of symmetries. Explain which symmetries are included and when
they occur. Be prepared to share the clip with your class.

2.2.6 Glide Reflections

We are missing one very interesting kind of symmetry: the glide reflection. Imagine you are
standing in front of a mirror but the mirror image is standing off to the side instead of in front of
you: the mirror image is translated parallel to the mirror. See Figure 2.4 for an example.

4This exercise is taken from www.mathdance.org, [13]
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Figure 2.4: Dance Example of a Glide Reflection

38. Independent Investigation: With a partner, decide who is leading and who is fol-
lowing, and then move in glide reflections. How difficult is this compared to moving in
the other kinds of symmetry?
Can you switch from glide reflections into any of the other symmetries or not? If yes,
give examples of positions that allow you to switch. Describe all positions that allow
such a switch and explain how you know that you found all such positions. If a switch
is not possible explain why you can be sure that it is impossible.

2.3 Symmetry Choreograhy

So far we have been using the dance structure to ask interesting mathematical questions. But the
aspect of choreography itself has similarities to mathematics. To explore those we will do a little
dance performance.

We will use the 4 symmetries we discussed above (reflectional, rotational, translational,
glide reflectional), but allow rotations of any degree. Get into groups of 4 dancers. Choose
3 of the above 4 symmetries. Now invent three different interesting dance poses that you all
like. Be creative!

For each pose choose one of the symmetries. One person will get into the pose and the
other group members will show a symmetric version of the pose. You could for instance stand
in a circle and each show a 90 degree rotation of the original pose. Or you could all be in
translational symmetry. You can also mix two symmetries and have two dancers in reflectional
symmetry and the other two showing a rotational version of the first two dancers.

When you have composed the three poses in symmetry find interesting transitions to move
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between the poses. Make it easthetically pleasing to you. End your dance in an asymmetrical
pose (why?). You can arrange your dance to music if you like. Now perform the dance
sequences for each other.

39. What did you notice about the dance sequences? What did you enjoy? Why?

40. Describe the process of creating a dance, what did you do?

41. How is choreographing a dance similar to doing/discovering mathematics?

2.4 Further Investigation

2.4.1 Dance in Symmetry in a Line

Assume for the moment that your dancers all stand on one line.

F1. With a partner dance in translational symmetry (one leading, one following) while you are
both standing on the same line. Does your definition of translational symmetry change if
restricted to a line? In which direction can you translate? Explain.

F2. With a partner dance in reflectional symmetry (one leading, one following) while you are
both standing on the same line. Does your definition of reflectional symmetry change if
restricted to a line? Where can your mirrow be? Explain.

F3. With a partner dance in rotational symmetry (one leading, one following) while you are
both standing on the same line. How would the definition of rotational symmetry change
if restricted to a line? Where can the points of rotation be? How many degrees can you
rotate? Explain.

F4. With a partner dance in glide reflectional symmetry (one leading, one following) while you
are both standing on the same line. How would the definition of glide reflectional symmetry
change if restricted to a line? Where can the mirror be and in which direction can you
translate? Explain.

F5. Look at the position the dancers hold in Figure 2.4. They are in planar glide reflectional
symmetry. Now move the dancers (either in your head, or on paper, or try it out!) until the
dancers stand in a glide reflectional symmetry on the line as in Figure 2.5. Be careful: the
dancers have to stay in planar glide reflectional symmetry while you move them.

Figure 2.5 shows an example of each of the four symmetries on the line. But what happens
if we combine two symmetries? Do we get one of our four symmetries again or do we get a new,
maybe asymmetric movement?
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Glide RefletionalTranslational Reflectional Rotational

Figure 2.5: The 4 Symmetries on a Line

42. Independent Investigation: Take the four symmetries in a line and combine two of
them at a time. See if you can describe the result as one of our line symmetries. Use
Figure 2.6 to record your answers. If you believe that you found the correct answers,
prove them: how can you be sure that this will always be the result?

The pattern that you found is very special to mathematicians, they call any set of objects
with this kind of combination table a Klein 4 group after Fleix Klein (German Mathematician;
1849 - 1925). The Klein 4 group can show up in many different contexts, its existance can for
instance prove that a formula exists to find the x-values at which a polynomial of degree 4, e.g.
y = 5x4 + 65x3 − 16x2 + 89x − 911, is equal to zero.5 Remember your quadratic equation from
high school? This is the same idea but for much more complicated functions.

2.4.2 More Symmetries of the Plane

Let’s see if we get a similar structur for our four symmetries of the plane (not the line). Recall
that we allowed translations in any direction in the plane, reflections at any mirror in the plane,
180 degree rotations around any point, and glide reflections across any mirror with a translation
parallel to the mirror.

43. Independent Investigation: Take our four symmetries in the plane and combine
two of them at a time. See if you can describe the result as one of our symmetries. Use

5The proof uses Galois groups and resolvents, see http://en.wikipedia.org/wiki/Lagrange_resolvents, http:
//en.wikipedia.org/wiki/Quartic_function or [4]
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Figure 2.6: Combinations of the 4 Symmetries on the Line

Figure 2.7 to record your answers. If you believe that you found the correct answers,
prove them: how can you be sure that this will always be the result?

You probably noticed that this question is harder to answer. If I have, for instance, 2 mirrors,
how do I know where in the plane they are? Look at the following investigations to see how
complex the combinations of symmetries in the plane can be:

F6. Suppose you have two mirrors that are positioned at a radom angle. What happens
when I combine the symmetries across these mirrors? Is the combination one of our plane
symmetries? Why or why not?

Because of your result in Investigation 6 mathematicians do not call our set of symmetries in the
plane a group. They say that “the set of symmetries is not closed under the combination”. You
will discover later what is needed for a mathematical group.

F7. Explain what the statement “the set of symmetries is not closed under the combination”
means - in the context of our symmetries in the plane.

This might be dissapointing, we always hope to find more structure in the objects we are
studying! But there is a neat trick to get some of the structure back.

First of all we noticed in Investigation 6 that we need to allow rotations of degrees other than
180 degrees. So from now on we will look at rotations around any point using any degree. Here is
the trick: a translation can be considered a rotation around infinity. What? Infinity? Look at the
following questions to make sense of this:
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Figure 2.7: Combinations of the 4 Symmetries in the Plane

F8. Imagine a dancer is standing at point A in Figure 2.8, left scenario. If you choose your
center of rotation at point P and rotate dancer A clockwise around P to a new point B, by
how many degrees has the orientation of the dancer changed? Explain.

F9. Imagine a dancer is standing at point A in Figure 2.8, right scenario. If you choose your
center of rotation at point P and rotate dancer A clockwise around P to a new point B, by
how many degrees has the orientation of the dancer changed? Explain.

F10. Try a new scenario in which you move P even further to the left (A and B stay fixed).
What happens to the orientation change? Explain.

F11. Imagine moving the point P further and further away, all the way to infinity. What do
you think will happen to the orientation change? Explain.

F12. Using your reasoning from the above investigations, why can a rotation around infinity be
considered a translation? Explain.

So this means we can combine our T and our R into one row or column in our table. But
we can simplify even more: A glide reflection with no translation (or a translation of length 0) is
really just a reflection, right? So in that sense we can combine the M and the rows and columns
in our table, see Figure 2.9.

F13. Fill in table in Figure 2.9. How can you be sure that your answers will always be correct?

F14. Compare our new table with the tabe of the Klein 4 group. What is similar? What is
different?
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Figure 2.8: Rotations
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Figure 2.9: Combinations of the 4 (adjusted) Symmetries in the Plane
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2.4.3 Planar Symmetries and Groups

We want to look at one more way to define which symmetries we allow one the plane. We will
look at the following 8 symmetries:

• translations,

• 90, 180 and 270 degree rotations around any point,

• glide reflections along vertical, horizontal, 45 and -45 degree mirrors. (Recall that the glide
reflections of glide zero are just reflections.)

44. Independent Investigation: Draw and fill in the 8x8 table for the symmetries de-
scribed above. Explain why you can be sure that you answers are correct for any possible
combination.

F15. Is this set of 8 symmetries closed, i.e. is every combination of the symmetries again one of
the 8 symmetries? Explain why or why not.

F16. Find one of the 8 symmetries that when combined with any other symmetry S will give
just S? We call this symmetry the identity element.

F17. Given any symmetry S find a symmetry T that gives the identity element when combined.
We call T the inverse element of S.

F18. Does the table have a symmetry line across the main diagonal (from top left to bottom
right)? Look carefully.

Further Investigations F15-F17 are asking about all the properties needed for a mathematical
group. Further Investigation F18 decides whether a group is commutative or not. This formal
definition is extremely powerful, it provides us with a structure for mathematics that is used in
many areas of higher mathematics, starting with abstract algebra .

F19. Look back the Klein 4 group and our group of two elements. Are they commutative or
not?

This process of looking at symmetries and how they influence the resulting structures is exactly
what mathematicians did in the 18th century. Mathematicians all over the world were exploring
geometric spaces that are different from our Euclidean geometry. The idea of different geometric
spaces was (and is) mind blowing. If you are interested in learning more we suggest the investi-
gations at http://mathcs.slu.edu/escher/index.php/Math_and_the_Art_of_M._C._Escher.
And Felix Klein, the explorer of the Klein 4 group, was instrumental in describing geometry
in a unified way encompassing Euclidean and non-Euclidean geometry. He published his results in
the famous “Erlanger Program” in 1872.

The next section will introduce you to symmetry groups of our usual Euclidean space, and hint
at the non-Euclidean symmetry groups.

21

http://mathcs.slu.edu/escher/index.php/Math_and_the_Art_of_M._C._Escher


DRAFT c© 2016 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

Figure 2.10: Triangles in Spherical and Hyperbolic Geometry

2.5 Frieze Patterns

It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is all
that introduces order, all that gives unity, that permits us to see clearly and to comprehend
at once both the ensemble and the details.

Henri Poincare (French Mathematician; 1854 - 1912)

2.5.1 Frieze Patterns and Feet

Let’s make a connection to symmetries in other areas of art, for instance in architecture. A frieze
pattern is a pattern that has symmetry “in one direction”. Friezes refer to the patterns right
under the rim of a roof, a window etc. See Figure 2.11 for an example.

Figure 2.11: St. Louis Cathedral Basilica, Detail of Pulpit.

It is amazing to see that frieze patterns occur in so many different cultures all over the world.

45. Go online and find a few frieze patterns that you like from different cultures. Be prepared to
share your patterns with the class. Can you say something about the story of the building,
artwork, etc that the frieze pattern is connected to?

46. Independent Investigation: Take large strips of paper and walk in a repeating
pattern across the paper. The simplest pattern would be to just walk straight across
the paper, so please be more creative. Draw your feet on the paper so you can see
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the pattern afterwards. Now analyze the symmetries of your pattern. Can you find
translations, reflections, rotations and glide reflections?

The famous mathematician John Horton Conway (British Mathematician; 1937 - ) used the
idea of moving feet to describe seven different frieze patterns, see Figure 2.12, [5].

47. Find all symmetries (translational, rotational, reflectional, glide reflections) in the first pat-
tern in Figure 2.12.

48. Find all symmetries (translational, rotational, reflectional, glide reflections) in the second
pattern in Figure 2.12.

49. Find all symmetries (translational, rotational, reflectional, glide reflections) in the third
pattern in Figure 2.12.

50. Find all symmetries (translational, rotational, reflectional, glide reflections) in the fourth
pattern in Figure 2.12.

51. Find all symmetries (translational, rotational, reflectional, glide reflections) in the fifth pat-
tern in Figure 2.12.

52. Find all symmetries (translational, rotational, reflectional, glide reflections) in the sixth
pattern in Figure 2.12.

53. Find all symmetries (translational, rotational, reflectional, glide reflections) in the seventh
pattern in Figure 2.12.

If you look at different cultures you can find all seven frieze patterns (see Figure 2.12) repre-
sented in each one of them, so the people must have “known” that there are not more than these
seven, right? Would they not have used an 8th pattern if there was one? We would like to see if
this is really true. So let’s start with checking the claim using our own patterns. After all, if we
find one example that is not in the list we should tell other people about it!

54. Analyze your own feet patterns and see if each feet pattern exhibits the exact symmetries
of one of Conway’s feet pattern in Figure 2.12. Be prepared to share your thinking with the
class.

2.5.2 Are there exactly 7 Frieze Patterns?

So, are there just these seven frieze patterns (where patterns are considered the same if they have
the same kind of symmetries? This question is investigated in a paper entitled ”Classifying frieze
Patterns Without Using Groups,” by sarah-marie belcastro and Thomas C. Hull [10], available at
http://mars.wne.edu/~thull/papers/friezepaper.pdf.
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Figure 2.12: Frieze Patterns for Feet
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55. Independent Investigation: Read the paper ”Classifying frieze Patterns Without
Using Groups” section by section, discussing the authors’ approach, their pictures, ideas,
and arguments. You will explore in the next investigations how these relate to and
compare with your classroom experiences with symmetries. Take careful notes and use
your group to make sure you fully understand the details.

56. The authors list five different basic symmetries they call t, r, h, v, and g. Among the frieze
patterns in Figure 2.12, can you find examples for each of these five symmetries? Explain.

57. How do you think the authors came up with the list of sixteen combinations listed as part
of Step 2? Explain.

58. Explain why the sixteen combinations listed as part of Step 2 are all the possible symmetries
we need to consider? Why are there no others to consider?

59. How many of these are of length 1, length 2, length 3, length 4? (By ”length” we mean the
number of ”basic” symmetries such as h or g. For example hvr has length 3, hv has length
2.)

60. Perhaps you have encountered expressions such as ”4 choose 2” in the past? Imagine that
I have four different kinds of candy. You get to choose two of them. How many different
choices are possible?

61. Mathematicians usually write
(
4
2

)
as a shorthand for ”4 choose 2” and call them binomials

or binomial coefficients. How many are
(
4
2

)
? How many are

(
4
3

)
? How many are

(
4
1

)
? How

many are
(
4
4

)
? How many are

(
4
0

)
?

62. How are these numbers related to the list of sixteen combinations listed as part of Step 2?
Explain. (Hint: Consider your answers to exploration Investigation 59.)

63. The formula at the top of page 95 of the paper includes expressions such as
(
4
3

)
. What

relationship do you think this equation expresses?

Next, we will take a look at the pictures the authors draw in their paper. Why do you think
they choose the letter P?

64. The authors claim that the resulting pattern in Figure 3 does not have h, v, or g symmetry.
Is that true or not? Explain.

65. The authors claim that the pattern in Figure 3 has two types of rotational symmetry. Is
that true or not? Draw all the centers of rotation you see into the Figure and indicate the
angle by which you would rotate.

66. Why is h ”never lonely”? Explain in detail.

67. Why are v and g ”happy being single?” Explain in detail.

68. Why does hr say ”we are not alone?” Explain in detail.
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69. What is the familiar pattern that vr produces? Explain in detail.

70. Which of the frieze feet patterns in Figure 2.12 corresponds to Figures 8–10 in the paper?
Explain.

71. Explain the information in their ”Final List,” Table 1 on page 98 of the paper.

72. Independent Investigation: In your own words, explain why there are only
seven frieze patterns.

Imagine that your audience is a fellow student who missed the last two classes, has
therefore not read the paper, but who shared our explorations with dance and symmetry
before that. The explanations and arguments in your writing should be clear to such a
person.

Take your time to think carefully about the question; go back to the article we read
for details; gather ideas about what you want to include in your essay; explore how to
structure your writing; and how to express in a clear way your thinking. Use evidence
from the article to support your arguments. You may use your previous explorations
and your group as resources to help you clarify what is unclear, or to discuss what is
controversial.

This was a long exploration of purely mathematical ideas. And you were the mathematician!
Now we want to connect the mathematical idea back to the dance.

73. Independent Investigation: Create your own dance using the ideas of frieze patterns.
Perform your dance in front of the class. Can your classmates find the patterns you
used?

2.6 Further Investigations

2.6.1 Wallpaper Patterns

In the last section we understood all different symmetries of an infinite line, a frieze pattern. It
is natural to wonder how this extends to the plane, to two dimensions. In how many ways can I
have symmetric wallpaper patterns as in Figure 2.13? Are there just 7 again? Or more?

These patterns that fill the infinite plane are also called tessellations. With similar strategies
as before we could now prove that there are exactly 17 wallpaper patterns that represent the
symmetries.

This result was proven in the late 19th century simultaneously by Evgraf Fedorov (Rus-
sian Mathematician; 1853 - 1919), Arthur Schoenflies (German Mathematician; 1853 - 1928),
and William Barlow (British Chrystallographer; 1845 - 1934). Check out the amazing website
http://clowder.net/hop/17walppr/17walppr.html#p2 to see the symmetries of the wallpaper
patterns in action.
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Figure 2.13: Examples of Egyptian Designs

Can we use the wallpaper symmetries to create beautiful movements? Karl Schaffer has played
with arrangements of dancers that follow a lead-dancer according to a specific symmetry. The
results are beautiful and complex, see Figures 2.14-2.15.

74. Independent Investigation: Research the 17 wallpaper symmetries and choose one.
(You can choose one of the two example provoded here, see Figures 2.14-2.15, but you
don’t have to.) In your group or class invent a dance for one person that you then mimic
using the “instructions” given by the symmetry. Do you like the result?

2.6.2 Non-Euclidean Symmetries

We saw in the last section how you can tessellate the plane. Now we want to tessellate the
sphere and the Poincaré disk - a model of hyperbolic geomtery. See Figures 2.16-2.17, aren’t they
beautiful? There are about 31 different spherical symmetry patterns and 20 different hyperbolic
symmetry patterns, depending on how you count them.

Again, we highly suggest the investigations at http://mathcs.slu.edu/escher/index.php/

Math_and_the_Art_of_M._C._Escher to get involved with the mysteries of non-Euclidean geome-
tries..
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Figure 2.14: Dancing Symmetries of Wallpaper Patterns: Example 1
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Figure 2.15: Dancing Symmetries of Wallpaper Patterns: Example 2

Figure 2.16: Spherical Tessellation
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Figure 2.17: Hyperbolic Tessellation
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Chapter 3

Salsa Rueda

Everything in the universe has rhythm. Everything dances.

Maya Angelou (American Author and Poet; 1928 - )

3.1 Learning the Basic Dance

Figure 3.1: Students practicing Salsa Rueda at Westfield State University

The underlying rhythm of a typical Salsa song is the 2-3 clave, also called Son [14]. You can
think of it as 10010010 00101000 where 1’s denote drum hits and 0’s denote the ongoing beat. It
is difficult to hear this underlying rhythm in the music, but for the dancing it in not necessary to
do so. The steps are on different counts than the Salsa rhythm emphazises. For this chapter we
will not focus on the 2-3 clave but practice the actual dance steps. Listen to some Salsa music,
find the beat and count in eights. First step on every beat. Then step just on 1,2,3 and 5,6,7. It
doesn’t matter yet on which foot you start, but keep switching feet for every step. Practice this a
lot in order to become more flexible. You want your feet to remember this rhythm by themselves,
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because later we need to add arm movements and directions to it. Try talking while you step,
making turns, going backward, forwards and sideways.

Salsa Rueda was developed in Havana, Cuba in the 1950s. In Salsa Rueda couples are standing
in a circle with the leader on the right side of the follower. Traditionally in partner dancing the
men are leading and the women are following. One of the leaders is the “caller” telling the other
leaders during every move which move is coming next.

Watch http://www.youtube.com/watch?v=uisqUEMcH5U and other video clips on youtube.

com to get a feeling for salsa rueda.
You can use the rueda wiki http://www.ruedawiki.org/rueda/index.php?title=Main_Page

for an introduction to the basic step Guapea. With your class, practice the guapea until you feel
comfortable. The video shows the guapea step with the partners facing each other. When standing
in the circle it is nice to face the other couples during the first 3 steps and only then turn towards
your partner.

When your class tried to form a circle of couples for the first time, there might have been some
shuffling around until everybody actually had a partner and all the couples were organized in a
nice circle. This leads to our first set of mathematical questions: Imagine your whole class gets up
to dance for the first time. Now everybody is standing and trying to find a partner to dance with.
In how many different ways can we find dance partners for everybody?

1. 4 people are getting up to find a dance partner. How many ways are there to make couples
out of these 4 people? (At this point we don’t care who is leading or following, we just create
pairs). We want all dancers to have a partner at the same time, since we cannot dance the
salsa rueda otherwise. What makes you convinced that your answer makes sense?

2. How many ways are there to give everybody a partner if you have 6 people? (Hint: Acting
this out with people, can you confirm your answer?) What makes you convinced that your
answer makes sense?

3. How many ways are there to give everybody a partner if you have 8 people?

4. How many ways are there to give everybody a partner if you have 10 people?

5. Do you see a pattern? Describe.

6. Estimate how many ways there are to give everybody a partner if you have 20 people?

7. Now find out precisely how many ways are there to give everybody a partner if you have 20
people?

8. How does this result compare to your estimate? Does your answer surprise you? Explain.

9. Now you are ready to answer this question in general. How many ways are there to give
everybody a partner if you have n people?

Now we want to also keep track of who is leading and who is following. We don’t want to worry
about gender for the moment, so everybody can lead or follow according to their liking or ability.

10. How many ways are there to give everybody a partner if you have 4 people and you want
to distinguish between leaders and followers? As an example: if Jane is dancing with Sarah
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and Jane is leading then that is different from Jane dancing with Sarah and Sarah is leading.
Again, we need all people to have a partner at the same time since we want to dance in a
circle later.

11. How many ways are there to give everybody a partner (distinguishing leader and follower)
if you have 6 people?

12. How many ways are there to give everybody a partner (distinguishing leader and follower)
if you have 8 people?

13. How many ways are there to give everybody a partner (distinguishing leader and follower)
if you have 10 people?

14. Do you see a pattern? Describe.

15. Estimate how many ways there are to give everybody a partner if you have 20 people?

16. Now find out precisely how many ways there are to give everybody a partner (distinguishing
leader and follower) if you have 20 people?

17. Does your answer surprise you? Did you expect the answer to be larger or smaller than the
one in the last exploration? Explain.

18. Now you are ready to answer this question in general. How many ways are there to give
everybody a partner (distinguishing leader and follower) if you have n people?

To relax your math brain, dance some more Salsa Rueda and practice the basic step some
more.

Since we dance Salsa Rueda we need to also arrange our couples in a circle. This next explo-
ration comes with less help. See if you can find the necessary steps yourself. How can you check
that you are correct?

19. If we have 20 dancers (10 couples), in how many different ways can we arrange them around
the circle?

20. Does this answer surprise you? Explain.

3.2 Salsa Rueda – Da Me and Da Me Dos

Now we are ready to learn and practice di le que no and da me (using ruedawiki.org). It helps to
first practice just the general motions of the dancers without bothering with the exact steps. To do
this stand in a circle with the leaders on the right side of their followers. Now all the followers walk
to the next “open space” to their left; now every follower has a new leader. In the next version
let the leaders lead their next partner around them to their new position. Once these motions are
comfortable, add in the music and the steps. The leader first get into standard dance position with
their new partners (leader has the right hand on the left shoulder blade of the follower, leader’s
left hand holds follower’s right hand), and then dance di le que no and da me.

21. While you are practicing Salsa Rueda, did you notice any kind of symmetry? If yes, which
one? Is this symmetry helpful to you when you are learning the dance or not?
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Da me dos is more difficult to dance because the leaders now want to dance with the second
follower to their right. Get into the circle and let leaders make eye contact with the second fol-
lower to their right. On the first count, the leaders walk as fast as possible to their next partner
(passing one follower) and dance a di le que no with their new partner. Watch the video clip on
ruedawiki.org to watch the move.

The caller of the dance has to be creative in combining the different moves into a smooth and
pleasant dance experience. But how many choices are there?

22. How many beats does it take to dance a da me?

23. How many beats does it take to dance a da me dos?

24. If you are only able to use da me and da me dos (not even the basic step!), how many
different combinations of dance moves can you create in 64 beats? Explain.

We want to draw pictures of a whole salsa rueda dance position or dance move. One of the
easiest dances would be to only dance da me’s. Given 4 couples, what would that look like?
Leaders will be denoted by a black dot, followers by a grey dot. In da me only the follower change
positions, hence the path looks like Figure 3.2.

Figure 3.2: The path of a rueda dance using only da me.

If we dance only da me dos’s the path would look different. Now the leaders and the followers
are moving! To make the path easier we will assume that only the follower moves towards the
correct new spot. See Figure 3.3.

25. If there were 6 couples and we would dance only da me, would every leader dance with every
follower? Why or why not?

26. If there were 6 couples and we would dance only da me dos, would every leader dance with
every follower? Why or why not?

27. Using only da me dos and 12 couples, predict if every leader will dance with every follower.
Explain.
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Figure 3.3: The path of a rueda dance using only da me dos.

28. Using only da me dos and 11 couples, predict if every leader will dance with every follower.
Explain.

29. For any number of couples only dancing da me, predict if every leader will dance with every
follower. Explain.

30. For any number of couples only dancing da me dos, predict if every leader will dance with
every follower. Explain.

Now try dancing a da me tres, in which the leader goes to the third follower on his right (not
the second as in da me dos). If you dare, try a da me quatro!

31. If there were 6 couples and we would dance only da me tres would every leader dance with
every follower? Why or why not?

32. Using only da me tres and 12 couples, predict if every leader will dance with every follower.
Explain.

33. Using only da me tres and 11 couples, predict if every leader will dance with every follower.
Explain.

34. For any number of couples only dancing da me tres, predict of every leader will dance with
every follower. Explain.

35. Independent Investigation: Imagine you could have any number of couples dancing
in a circle and you could do any number of da me’s. Predict if every leader will dance
with every follower or not.
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Figure 3.4: The dance of Earth and Venus.

Figure 3.4 should remind you of the patterns you drew to answer the above independent
investigation. This picture was generated by drawing a line between the position of earth and the
position of venus every few days. Isn’t it an amazing dance pattern?

To explore more dance patterns of planets, see http://ensign.editme.com/t43dances.

3.3 Further Investigations and Connections

F1. How do we know that after dancing only dame dos every dancer will eventually dance
again with their original partner? Find a proof.

F2. How do we know that after dancing only dame tres every dancer will eventually dance
again with their original partner? Find a proof.

F3. How do we know that after dancing only dame k every dancer will eventually dance again
with their original partner? Find a proof.

F4. Do you know Spirographs? Compare spirographs with the last independent investigation.
You can find details in the book Discovering the Art of Mathematics: Patterns.

F5. Compare the last independent investigation with Star Polygons from the book
Discovering the Art of Mathematics: Patterns.
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Chapter 4

The Space of Partner Salsa
Dancing

I see dance being used as communication between body and soul, to express what is too deep
to find words for.

Ruth St. Denis (American Moder Dancer; 1879 - 1968)

Look at the video clips on http://dmitri.tymoczko.com/ChordGeometries.html. They show
how Dmitri Tymoczko visualizes the space of all musical chords, using some cool geometric shapes
like the Moebius strip and the torus [15]. Details can be found in the chapters on musical 2
and 3 chords in Discovering the Art of Mathematics: Music. When I saw and understood the
space of musical chords for the first time I was intrigued: would it be possible to create a similar
space for Salsa dancing? If yes, what would it look like, how big is it, and does it help me in
leading/composing a dance?

These are very big questions to answer and at the time we started looking there was absolutely
no research done in this area. Some people had invented notations for Salsa dance moves but there
was no concept of measuring “how much there is”. If a question in mathematics seems too big
to understand, we begin small. What is a question we can answer? Well, how about counting
positions with both hands held first?

4.1 Counting Positions

[The following material is published as ”Mathematics and Salsa Dancing,” in the Journal of Math-
ematics and the Arts [3].]

In Partner Salsa dancing, the basic steps occur on beats 1, 2, 3 and 5, 6, 7 in an eight count
rhythm. The steps alternate, with the leader starting on the left foot and the follower on the right
foot. This basic step continues throughout the whole dance. The direction of the steps may change
depending on the decisions of the dancers. Visit our web site at
http://www.westfield.ma.edu/renesse/salsa/ for a video clip showing the basic step.

Once one masters the basic step, it does not form a major part of the complexity of the Salsa
dance any more. The real challenge lies—for the leader—in combining different moves in an in-
teresting way and—for the follower—in styling. The most important aspect that makes moves
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“different” is the positioning and movement of the arms. To our knowledge, no other dance de-
pends in such a major way on the arm positions. This is especially true in Cuban Salsa.

In this section, we will leave aside the details of the steps in Salsa dancing and focus on the
stationary positions of the body and arms that you reach after four or eight counts of the music
which is enough to lead a half turn or a full turn. We start by considering only moves where both
partners’ hands are held and will stay held throughout the moves. For now, we do not consider
moves where we let go of one or both hands. Additionally, we will first consider only moves in
which every position has one or fewer arm crossings: Crossings are counted as seen from above in
diagrams such as Figure 4.1 with the lowest possible crossings count, i.e. we do not allow extra
crossings which are easily undone by slight movements of the arms.

(1, 1, RR∗, LL∗, CL
R)(1, 1, RR,LL,CR

L ) (1, 1, RR∗, LL, 0)

Figure 4.1: Examples of Salsa dance positions.

There are of course infinitely many ways how a couple could stand in any position: just move
the hand an inch and you have a slightly different position. We only want to count positions that
are significantly different, i.e. positions that need a defined “dance move” to change. Notice that
the dancers always stand across from each other (as if they are standing on a line facing each
other), never next to each other. These are the types of dance moves we allow:

• Turn the follower to the left (counter-clockwise) or right (clockwise) by multiples of 180
degrees (follower half turn).

• Turn the leader to the left or right by multiples of 180 degrees (leader half turn).

• Move one or both hands over the head of the follower.

• Move one or both hands over the head of the leader.

• The follower can duck under arms (difficult to lead).

• The leader can duck under arms.

• Move arms up or down.
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Now grab a partner and try out how many different positions you can get yourself in keeping
both hands held.

1. Write down the first 10 positions that you find. Draw a picture or a diagram similar to
Figure 4.1.

2. Draw out or describe all stationary dance positions when both dancers face each other with
same hands (right to right and left to left) held.

3. Draw out or describe all stationary dance positions when both dancers face each other with
opposite hands (right to left) held.

4. What happens when one or both dancers face away from each other. Draw out or describe
all stationary dance positions, when (a) same hands and (b) opposite hands are held.

5. How do these positions relate to your answers to Investigation 2 and Investigation 3?

6. Use symmetry to find positions that you have left out. If, for instance, the leader has an arm
behind the follower’s back, could there be a position where the follower has an arm behind
the leader’s back?

7. Using symmetry, did you find positions that seemed to work on paper but not in practice?
Show at least one.

8. Classroom Discussion: Share your solutions with your class and see if you can find a way
to count all of the positons with both hands held. Use symmetry to argue why you found
all the positions.

4.2 Salsa Dance Moves

You have a pretty good understanding now of how difficult some positions can get and probably
how to get in and out of some of them. Now we would like to look at the space of salsa dancing.
We will stay with the restriction of keeping both hands held for now. There are many options
how one could create the space, and the following investigations will lead you through different
approaches.

9. Draw two axes on a sheet of paper. Label the horizontal one with follower half right turn,
the vertical one with follower half left turn. The origin is our basic position with leader and
follower facing each other. Write down the positions you encounter when moving up or down
the axes.

10. In investigation 9 which positions can you get to when you move to coordinates that do not
lie on an axis? Name a few.

11. Are you missing positions from section4.1? If yes, which ones?

12. Classroom Discussion: What are the advantages and disadvantages of the approach in
investigation 9?

The following investigation will show you another approach:
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13. Draw two axes on a sheet of paper. Label the horizontal one with follower half right turn on
the right and follower half left turn on the left. Label the vertical axis with leader half left
turn on the bottom and leader half right turn on the top. The origin is our basic position
with leader and follower facing each other. Write down the positions you encounter when
moving up or down the axes.

14. In investigation 13 which positions can you get to when you move to coordinates that do not
lie on an axis? Name a few.

15. Are you missing positions from section4.1? If yes, which ones?

16. Classroom Discussion: What are the advantages and disadvantages of the approach in
investigation 13?

What you just did in understanding and evaluating the two approaches is called mathematical
modeling . In mathematical modeling you are trying to find a model for a given situation that
is too complex to be fully understood as a whole. Often models only show special aspects of the
whole picture and it is up to us to decide which one fits best. Mathematical models are used in
all the sciences, in mechanics and engineering, and in the social sciences.

4.3 Further Investigations

F1. For the models in investigation 9 and 13 try the following. Pick a point other than the
origin and pick two different “paths” through the space of salsa dancing. Following both
paths, do you arrive at the same position?

F2. Now pick a different point other than the origin and pick two different “paths” through
the space of salsa dancing to that point. Following both paths, do you arrive at the same
position?

F3. Do you get the same result in investigation F1 and F2? Do you think your results will
happen for any point and any paths you could pick? Explain.

F4. With your dance partner stand in basic position with both hands held, facing each other.
Now try leading your partner in a full left turn with your right arm down and your left arm
up. What happens?

F5. Can you think of other positions and moves where it matters if the arms are held high or
low?

F6. Now you are ready! Read the paper Mathematics and Salsa Dancing’ in the Journal of
Mathematics and the Art [3] to understand how the complete space of salsa dance positions
with both hands held is created.
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Chapter 5

Contra Dancing

5.1 Contra Dancing and Permutations

Our nature consists in movement; absolute rest is death.

Pascal Blaise (French Mathematician; 1623 - 1662)

Contra dance is a partner dance in which couples dance in two facing lines of indefinite
length. Originally coming from English and Scottish country dancing it has evolved into its
own art-form. Many of the moves are similar to Square Dance moves. Watch the video http:

//www.youtube.com/watch?v=-1cPyJWm-g4 on youtube to get an idea of a typical contra dance.

Now listen to the contra dance music in the video and see if you can detect any structure.

1. Can you hear how many beats form a measure or a smaller unit of the music?

2. Are there parts of the music (for instance the melody) that repeat after a while? If yes, after
how many beats?

There are different ways how the couples can line up for a contra dance. We will only dance
“improper” dances in this section, which means the couples are arranged as in figure 5.1. Couple 1
consists of leader 1 (L1) and follower 1 (F1) and couples two consists of leader 2 (L2) and follower
2 (F2). For simplicity we will use the male pronoun for the leader and the female pronoun for the
follower. In contra dancing the leader is often called gent and the follower lady. The person next
to you of the opposite gender that is not your partner, is called your neighbor. For instance F2
is the neighbor of L1 and L2 is the neighbor of F1.

Now we need to learn some basic moves of contra dancing. I suggest to make a field trip to
a local contra dance and learn the moves while doing them. There are some introductory videos
on you tube, for instance the CCD series http://www.youtube.com/watch?v=qTtEOaruqr4. See
Figure (5.2) to get an idea what a contra dance event might look like. For the purpose of this
book we will list a few important moves. Each step is on one beat.

• long lines forward and back
Hold hands in long lines down the hall. Go forward 4 steps (the lines go toward each other)
then go backwards 4 steps.
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F6

Caller

down the hall

Music

F2

L2 F1

L1

F3

L3

L4

F4

F5

L5

L6

Figure 5.1: The typical setup for a Contra Dance.

• circle left
Hold hands in your group of 4, then walk to your left around the circle. The caller will
tell you how much, one quarter, half way round, three quarters or all the way around.
(http://www.youtube.com/watch?v=DBvhyVata9I)

• ladies chain
This move can only be done in the setup as in Figure (5.3). The two followers walk toward
each other, pull by with the right hand and are being led around by the opposite leader. The
leader can hold the follower in promenade position, with his right arm around her waist and
his left hand holding her right hand. This move takes 8 beats. (http://www.youtube.com/
watch?v=DBvhyVata9I)

• swing
The caller announces who is swinging with whom. Get into regular dance position, with the
leader’s right hand behind the follower’s back and the other hands held. Both dancer now
walk around each other clockwise. Instead of just walking both dancers can bring their right
feet into the middle and keep kicking off with the left feet. Through the momentum the
couple moves fast and smooth in right turns until 8 beats are up. The follower ends at the
right side of the leader. (http://www.youtube.com/watch?v=N1o7tdtHZyE).

• right left through
We start in a setup as in Figure (5.4). Leaders and followers walk through the other couple
to the other line and turn there as a couple, so that in the end the follower is again on the
right side of the leader. (http://www.youtube.com/watch?v=DBvhyVata9I).

What makes contra dancing so interesting is that the dance progresses. After each round
of music (64 beats) the first couple and the second couple exchange places and turn around, so
that they dance with new neighbors next. The dance continues and in the end you danced with
everybody in the whole line. See Figures 5.5-5.6 for the dance setup before and after the dance
progressed once. Notice that couple 2 is out after the first progression and waiting to come in after
the next progression to dance with couple 4.

Our main question for this chapter is the following: Imagine you are creating a contra dance
yourself; how can you be sure that the dance progresses?
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Figure 5.2: Contra Dance in Peterborough.

3. In the following simple dance, figure out if the dance progresses or not: neighbor swing, right
left through, lady’s chain, long lines forward and back, circle left three quarters. How did
you do find your answer? Explain in detail.

Mathematicians like to think about setups using numbers, so let us draw numbers on the floor
to label the positions of the dancers. See Figure (5.7).

Imagine that each dancer has a card that tells her for each move from which number she has
to go to which number. Example of the 4 cards for ladies chain:

1→ 3

2→ 2

3→ 1

4→ 4

This notation is a bit cumbersome, so let’s write (1, 3)(2)(4) instead. This means that positions 1
and 3 exchange places while positions 2 and 4 don’t move. Think of (1, 3) as 1→ 3 and 3→ 1.

4. Write right left through in this new notation. Explain your solution.

5. Write circle left three quarters in this new notation. Explain your solution.
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Caller

F L

FL

Music

down the hall

Figure 5.3: The setup for a ladies chain.

F

Caller
down the hall

Music

L F

L

Figure 5.4: The setup for a right left through.

6. Write long lines forward and back in this new notation. Explain your solution.

Mathematicians call this new notation permutations. Permutations describe in an easy way
how to get a one-to-one correspondence between the two sets {1, · · · , n} and {1, · · · , n}. n can be
any number; in the above example n is equal to 4. One advantage of writing moves as permutations
is that we can compute very easily if a dance progresses or not.1

7. Write the short dance from Investigation 3 in permutations.

8. Write all the permutations from the moves next to each other and see if you can figure out
how to compute what happens in the whole dance? For instance, if I start in position 1 and
follow all the different dance card instructions, can you predict where I will end up?

9. How can you tell if a dance progresses or not using permutations?

10. Does the short dance from investigation Investigation 3 progress or not?

1It is confusing if you think of the numbers as being numbers of the dancers. The numbers really stay on the
floor! Remember that after every move, you are now at a new number and you have to see what happens with that
new number on your next dance card!
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F6

Caller

down the hall

Music

F2

L2 F1

L1

F3

L3

L4

F4

F5

L5

L6

Figure 5.5: The setup for the dance.

Caller

L8

F8 F6

L6

F4

L4

L5

F5

L3

F3

L1

F1

Music

down the hall

Figure 5.6: The first progression.

We will use our short dance from investigation Investigation 3 and add one more move: a
neighbor-swing. Now you should be able to turn around after one round of the dance and
start the dance over with the next set of neighbors. With some contra dance music try out
the dance! You can find free contra dance music at http://www.jefftk.com/news/2010-10-30,
for instance http://ia600202.us.archive.org/22/items/Music_From_the_Contra_Dance_1/

cast2.mp3. If you don’t have anyone comfortable enough to call the dance moves, just mem-
orize the dance.

4

Caller
down the hall

Music

12

3

Figure 5.7: Numbering the positions on the floor.
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11. Independent Investigation: In groups, invent your own contra dance using per-
mutations and the moves you have learned so far. You can add more moves from
the CCD videos if you like: http://www.youtube.com/watch?v=N1o7tdtHZyE, http:
//www.youtube.com/watch?v=DBvhyVata9I and http://www.youtube.com/watch?v=

oJs9MEhTP6Y. Make sure that your dance really progresses. Then teach your dance to
your whole class.

5.2 Further Investigations

F1. Discuss how to notate the moves of a contra dance so that they are easy to call. Some
ideas are listed at http://www.quiteapair.us/calling/cardformats.html. Develop your
own dance card and practice calling the dance from Investigation 3. What is hard for you?
What is easy for you? Explain.

F2. As a class, find and practice another (more advanced?) contra dance. You can use
http://www.quiteapair.us/calling/compositions.html as a resource. Write the dance
in permutation notation and show that it progresses.
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5.3 Permutation Connections

In contra dancing you dance with different dancers in every progression. Similarly, in change
ringing a different order of bells is being chosen for every “progression”. Karl Schaffer wonders in
[12] if there is a connection between the development of contra dance and change ringing in the
17th century because the mathematics they require (permutations) is so similar. See Figures 5.8-
5.10 for images of change ringing. http://www.bellringing.org/ has a wealth of information
about change ringing as well.

Figure 5.8: How one Bell is Roung in Change Ringing.

Figure 5.9: A Group of Bell Ringers at the Inveraray Bell Tower in Scotland. Image by Mr.
William Dawson.

To physically understand how many permutations there are try the following activity:
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Figure 5.10: Recording the Order of 6 Bells in Change Ringing.

12. Independent Investigation: Take 3 people and try out all the different orders in
which they can stand next to each other. How many orders did you find? Now try the
same with 4 people. Create your own dance.
Now read Tim Verhoeff’s paper [16] and realize some of his variations on dancing per-
mutations.

In Michael Bush’s and Gary Roodman’s paper [1] you can find another beautiful connection
of mathematics and folk dancing (four couple dances) in which the possiblilty of a specific dance
configuration is discussed using permutations.
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5.4 Contra Dancing and Groups

Take a piece of paper and draw a square on it. Label the vertices with 1,2,3 and 4 clockwise. What
kind of symmetries does a square have? Any reflectional symmetry? If yes, across which axis?
One way is to fold the square in half so that vertices 1 and 2 touch and vertices 3 and 4 touch.
See Figure (5.11). To remember which vertices touch we write them as a permutation (1, 2)(3, 4).

12

3 4

Figure 5.11: Reflectional symmetry of a square.

13. Find all the other symmetries of the square and draw the pictures.

14. Write all the other symmetries of the square as permutations.

15. If you combine two of the symmetries of the square will you get a new kind of symmetry?
Check all the combinations.2

Now we know a lot about symmetries of the square, but how is this possibly connected to our
contra dances? Well, try this:

16. Find for every symmetry of the square a contra dance move. You might have to invent your
own move for some of them!

17. Do all the contra dance moves correspond to symmetries of the square? Explain.

One of the cool things in mathematics are structures that appear in or apply to several situa-
tions. You just found that symmetries of a square are in some way similar to a set of basic contra
dance moves. The structure that you found mathematicians call a group. A group consists of
a set of elements (e.g. the symmetries or the dance moves) and an operation (e.g. execute two
symmetries after one another, or, dance two contra dance moves after one another). In every group
there has to be a identity element that you can combine with all the other elements without
changing anything.

18. What is the identity element of the symmetries of the square?

2This is a lot of work, so think about how to organize your work. Maybe different groups of students can check
different combinations? You can write your result as one big table, similar to the multiplication table.
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19. What is the identity element of the contra dance moves?

Additionally every element in a group needs an inverse element . If you combine an element
with its inverse you get the neutral element from above.

20. What is the inverse element of a reflection of the square?

21. What is the inverse element of a rotation of the square?

22. Is there just one inverse element to each symmetry in the square?

23. What is the inverse element of lady’s chain?

24. What is the inverse element of circle to the left three quarters?

25. Is there just one inverse element to each dance move? Explain why or why not.

26. For a mathematical group we want each element to have exactly one inverse element. Write
down a list of contra dance moves that from a mathematical group.

You just convinced yourself that the symmetries of the square form a mathematical group and
that the basic contra dance moves form a mathematical group3! See [6] and [2] for more in depth
results about groups and contra dancing.

Groups by themselves might not seem that powerful, but they form the base on which many
complicated and powerful theorems in Abstract Algebra can be proven. Groups are for example
used in understanding Special Relativity and Molecular Chemistry but also in solving the Rubik’s
Cube.

Evariste Galois (French Mathematician; 1811 - 1832) was the first to use the mathematical
term “group”. Galois became interested in mathematics when he was 14 years old. He worked in
the area now called Group Theory, inventing Galois Groups as a teenager while also being involved
in the turbulent politics of his time. Galois died after a duel at the age of 20. See Figure 5.12.

Figure 5.12: Evariste Galois

3To be precise we would need to check closure and associativity as well, which is omitted here.
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5.5 Further Investigation: Contra Dancing and Groups

F3. Read the following new article and understand how you can use matrices to create (all)
contra dances:
www.sciencenews.org/article/contra-dances-matrices-and-groups

5.6 Other Connections

There are some interesting connections of Contra/Square Dancing to Japanese braiding. Watch the
Kumihimo KumiLoom Braiding Instructions at http://www.youtube.com/watch?v=0RNbFjvZycs.

F4. Describe how a Japanese braid is similar to a square dance or a contra dance.

F5. Open question: Can you use a Japanese braid to see if the corresponding contra dance
progresses?

Watch http://www.youtube.com/watch?v=qSxMeQVkFZQ for an amazing connection between
contra dancing and visualizing DNA.
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Chapter 6

Maypole Dancing

6.1 Which Ribbon Pattern is Created by the Dance?

We don’t accomplish anything in this world alone... Whatever happens is the result of the
whole tapestry of one’s life and all the weavings of individual threads from one to another
that creates something.

Sandra Day O’Connor (US Supreme Court justice; 1930 - )

Figure 6.1: Maypole Dancing in Westfield, Mass, 1939

In medieval village life, maypole dancing was a ritual to celebrate May Day. The pagan tradition
was meant to increase vitality and fertility. May Day is still celebrated in this way in many places
in Europe and also in the hill towns of Massachusetts; see Figure 6.2. The standard maypole dance
has a certain number of dance couples arranged in a circle around a high wooden pole. Colored
ribbons of fabric are strung from the top of the pole. Each dancer holds the end of one such ribbon.
Figure 6.3 shows the starting position for a maypole dance with four couples.
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Figure 6.2: Maypole Dancing in Ashfield, Mass, 2012

The large dashed circle indicates the outline of the dance circle, where pairs of leaders and
followers (indicated by squares and circles, respectively) are arranged for the dance. Leaders and
followers move in opposite directions around the maypole (leaders: counter-clockwise, followers:
clockwise). For this initial pairing, leaders pass to the outside of the followers, as indicated by the
arrows. When the dance starts, dancers will interweave with oncoming dancers by passing them on
the inside and then outside in an alternating fashion. As the dance progresses, the colored ribbons
wrap around the wooden pole, making patterns starting at the top of the pole and continuing
lower as the dance progresses. You can watch the following video to see a maypole dance in action:
http://www.youtube.com/watch?v=FxcIqMmlVOs&feature=related .

Building your own maypole: we find that a plastic pipe of about 2 inch diameter works well.
A home building supply store such as Home Depot or Lowes’ has sections that are 10 feet long
in their plumbing supply area; they also have shorter sections of about 2 feet that we find ideal
for each group. For ribbons we use satin ribbons of about 1 inch wide. Art supply stores such as
Michael’s has rolls of about 4 yards in various colors. Two colors, one dark, one bright, will be
enough for the first few explorations. Later, a third color with good contrast will be needed (we
use red in our figures).

1. Work in groups of at least 9 people. You will need one person holding the pole and 8 people
for the dance. For this first dance, we will try to match the setup shown in Figure 6.3: All
the leaders have light-colored bands and move in a counter-clockwise direction around the
pole; all the followers have dark-colored bands and move in a clockwise direction around the
pole. Decide on who of you will start in what position. The ribbons can be attached to the
top of the maypole using wide rubber bands. To make it easy to see the ribbon patterns that
emerge, it helps to attach each ribbon at a 45 degree angle to the top of the pole, hanging
down in the direction that the dancer will take (different directions for leaders and followers).
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Figure 6.3: Starting position of a maypole dance with four pairs of dancers. Leaders (indicated
by boxes) dance in a counter-clockwise directions; followers (indicated by small circles) dance in a
clockwise direction.

We find it easiest to attach all the leader bands first, using one wide rubber band. As you
face each leader’s ribbon where it is attached to the pole, you want it to move towards the
right hand side. Attach all the leader ribbons. It helps to adjust the angle of the band so
there is only very little extra space around the pole. Now attach all the follower ribbons,
in such a way that the top of a follower’s ribbon fits neatly on top of a leader’s ribbon. In
this case, the ribbons angle towards the left, neatly following the clockwise movement of the
followers. Finish all the follower ribbons and adjust all the angles and spacings so it all looks
neat.
Now dance the above described maypole dance until you see a ribbon pattern emerge on the
pole. Describe the pattern.

As a short-hand way, we describe the ribbon pattern of black and white ribbons shown for the
eight dancers in Figure 6.3 as WBWBWBWB. Notice that this lists the ribbon colors for each
dancer, starting with a particular leader, then their follower, on to the next dance pair in a
counter-clockwise direction.

2. In your groups, describe how “neat” the maypole pattern is: do you have gaps between the
ribbons or not? Are the ribbons tangled or squished in places? Do the angles of the ribbon
stay the same or change?

We want to explore how to choose pole, ribbons and angles of ribbons so that we get a perfect
beautifully arranged pattern.

3. Suppose we simply wanted to wrap one ribbon around the pole. Can you explain precisely
how to determine the correct orientation so there are no gaps or overlaps?

4. Is the orientation you found in Investigation 3 unique, or are there additional orientations
that will work? Explain precisely.
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5. Suppose you wanted to two wrap two ribbons around the pole, in the same direction, so
there was no overlap. Can you precisely determine the correct orientations for the ribbons?
Explain.

6. Can you repeat Investigation 5 for three ribbons? Four? Explain, precisely, how to determine
the maximum number of ribbons that can be wrapped around the pole.

Now that you have determined how to orient the ribbons, it will be easier to make tight, symmetric
weavings. But lets start a bit smaller than the original eight.

7. Take two ribbons of the same size but different colors. Orient them in opposite directions at
the appropriate orientations so your weaving will have no gaps.

8. What shapes do you see on the maypole pattern? Can you see how they are created by your
dance moves?

9. Now take four ribbons, two of one color and two of another. Orient two appropriately, across
from each other, and headed in the same direction. Orient the other two similarly, but
headed the opposite direction.

10. What shapes is your weaving made up of? Can you see how they are created by your dance
moves?

11. Suppose you continued adding couples. What would happen to the shapes?

12. Do you have to keep adding new colors as you continue to add couples? How should the
colors be added?

13. Suppose we want to create a weaving from a Maypole dance with four couples so that the
shapes the weaving is made up of are all squares. Determine precisely what the relationship
between the width, w, of the ribbons and the diameter, d, of the pole so there will be no
gaps or overlaps in the weaving.

Dancing a Maypole dance to get a nice, symmetric, gapless, non-overlapping weaving takes
some time and appropriate materials, materials whose relative sizes change as more couples are
added. It will not be feasible to physically experiment with all of the dances/weaving considered
below. But the human brain is an amazing thing in its power to make abstractions. From the
several examples that you have investigated physically, using body kinesthetics, you should be able
to investigate most of the dances/weavings below in your mind.

Now that we have some experience creating Maypole dances to create certain patterns, we would
like to understand how the choices of dance steps and colors impact the weavings. Conversely,
given a Maypole dance weaving, we would like to be able to determine what dance steps and color
combinations created this weaving.

14. Let’s go back to the original dance with 8 dancers. As a single dancer, describe which colors
you encounter in your dance, on the inside or outside. Where can you find the corresponding
color pattern in the larger ribbon pattern on the pole.
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15. Do the “encounters” repeat themselves, i.e. do you meet the same people in the same order
after a while? If yes, after how many passings does that happen? If not, why not? Explain
your thinking.

16. Did you notice a difference in passing a person on the outside or inside at this next encounter?
Explain.

17. Is the number of “encounters” until the dance repeats the same for leaders and followers?
Explain.

18. Using the dancers and their movements in your reasoning, explain why the whole ribbon
pattern on the maypole looks the way it does. Can you be sure it will continue the same
way?

We want to simplify the colors we have been using to get more interesting patterns. Let’s say
we use red, black and white: RBW.

19. Let two adjacent couples hold black ribbons, one couple red ribbons and one couple white
ribbons, i.e. we are looking at BBBBRRWW. Which dancers are the leaders, which are the
followers? Which ribbons would you put on the pole first? Set up the maypole with this
ribbon pattern.

20. Once you have the maypole set up, dance the maypole dance until a clear ribbon pattern
emerges. Describe the ribbon pattern on the pole, using drawings, tables, descriptions,
photos, etc. Use your imagination in how to best record this data.

21. Classroom Discussion: Compare your representations (drawings, tables, descriptions,
photos, etc.) of the ribbon patterns for BBBBRRWW with your classmates. What are
the advantages and disadvantages of the different representations?

22. Consider John’s representation of the ribbon pattern in Figure 6.5. Describe how this repre-
sentation relates to the dancers and the ribbons. How does it compare to your representation
of the last ribbon pattern? Label his picture so it is easier to understand for you.

To make it easier to analyze the pattern, John likes to turn it 45 degrees to the left, see
Figure 6.5.

23. In John’s ribbon pattern, Figure 6.5, describe in detail how a part of the pattern repeats.

We call the smallest part of a ribbon pattern that repeats itself the fundamental domain of the
ribbon pattern. To understand why the whole ribbon patterns looks the way it does, it is enough
to just look at the fundamental domain.

24. For example, you likely discovered a B/W checkerboard pattern for the WBWBWBWB
ribbons. What size domain could you use to completely describe that pattern? What would
be the smallest such domain that would fill the plane without gaps or overlaps?
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Figure 6.4: John’s ribbon pattern representation of BBBBRRWW

25. As one single dancer, describe which colors you meet in your BBBBRRWW dance and show
where you can find that color pattern in the larger ribbon pattern on the pole and in John’s
representation of the ribbon pattern.

26. Now change the color pattern to BWBWBWBW. Describe the pattern that emerges without
actually dancing the maypole dance.

27. As one single dancer, describe which colors you would meet in your BWBWBWBW dance
and show where you would find that color pattern in the larger ribbon pattern on the pole
and in John’s representation of the ribbon pattern.

28. Explain in detail why the whole ribbon pattern for BWBWBWBW looks the way it does.

29. Now change the color pattern to BWWBBWWB. Describe the pattern that emerges without
actually dancing the maypole dance.

30. As one single dancer, describe which colors you would meet in your BWWBBWWB dance
and show where you could find that color pattern in the larger ribbon pattern on the pole
and in John’s representation of the ribbon pattern.

31. Explain in detail why the whole ribbon pattern for BWWBBWWB looks the way it does.

32. In you last investigations you had to predict ribbon patterns without trying out the dance.
Dance those dances now and report if your thinking was correct or not. If not, explain how
you would like to change your thinking.

We are going to change the number of dancers now. So let’s first think about some basic questions:

33. Does the number of dancers have to be even or odd or does that not matter? Explain.

34. Does the number of pairs have to be even or odd or does that not matter? Explain.

We want to first consider what happens with 3 pairs of dancers.
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Figure 6.5: John’s turned ribbon pattern representation of BBBBRRWW

35. Dance the BBWWRR maypole dance until you see a ribbon pattern emerge on the pole.
Describe the pattern.

36. As one single dancer, describe which colors you meet in your dance and show where you can
find that color pattern in the larger ribbon pattern on the pole.

37. Do the “encounters” repeat themselves, i.e. do you meet the same people in the same order
after a while? If yes, after how many passings does that happen? If not, why not? Explain
your thinking..

38. Did you notice a difference in passing this person one the outside or inside at this next
encounter? Explain.

39. Find the fundamental domain for the BBWWRR dance.

40. Using the dancers and their movements in your reasoning, explain why the whole ribbon
pattern on the maypole looks the way it does. Can you be sure it will continue the same
way?

41. Classroom Discussion: Compare the size of the fundamental domain for 4 pairs with the
size of the fundamental domain with 3 pairs. What do you notice? Explain your thinking.
(Hint: Consider your observations in Investigation 16 and Investigation 38.)

6.2 Which Dance Arrangement Leads to this Ribbon Pat-
tern?

If you stumble make it part of the dance.

Anonymous
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Figure 6.6: John’s ribbon pattern representation of BBWWRR

As the maypole dance progresses and the ribbons are wound around the maypole, we may
observe patterns like those shown in Figure 6.7.

42. Describe how this pattern is similar to, or different from, the patterns that you observed in
your group when exploring maypole patterns.

In the Investigations of the previous chapter, we started with a particular arrangement of ribbon
colors for a given number of dancers. The goal was to understand and predict the pattern that
would result on the maypole. A problem like this is sometimes called a forward problem : given
some kind of physical process, we are asked to describe what kind of pattern will be created by this
process. In our case, the dance is the process that creates a ribbon pattern: the forward problem
attempts to predict the ribbon pattern resulting from a maypole dance with a certain number of
people. As an example of a forward process in the sciences, consider a medical professional taking
an X-ray of a part of your body. Forward problem: Given a particular body, predict what an
X-ray in a particular direction will look like.

In this chapter, we will look at the inverse problem for the maypole dance process. Looking
at a particular maypole pattern, such as Figure 6.8, we wonder: How many people participated in
this dance, and what arrangement of ribbon colors did they start with?

As an example of a forward and inverse problem pair from mathematics consider the following.
Forward problem: given two numbers, find their product. Compute, for example, 1234 × 4321.
Even for large numbers, people, calculators, and computers can solve this problem fairly quickly.
Now the inverse problem: take a composite number, that is a number resulting as a product
of other numbers, and determine its factors. For large numbers this problem takes a lot of time
even for computers, because many different possibly pairs have to be tried. Consider the following
number with 13 digits: 9, 449, 772, 114, 007, which is the product of two integers. How could we
find these two numbers? A modern public key encryption system called RSA is based on the
fact that multiplication is straightforward but factoring is computationally difficult (the numbers
involved in RSA encryption are very large, e.g. a 1 followed by about 100 zeros).

But let us return now to Figure 6.8.
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Figure 6.7: Maypole Pattern

43. How large is the fundamental domain of the pattern?

44. How many dancer will you need to dance the maypole dance that generates this pattern?
Explain.

45. Which colors will you need to dance the maypole dance that generates this pattern? Explain.

46. Is there a different way how you could arrange dancers and get the same pattern or is the
way of dancing a maypole pattern unique? Explain.

6.3 Further Investigations

Mathematicians often try to make a problem easier if they can’t solve it. Unfortunately this
doesn’t seem to really work for maypole dancing!
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Figure 6.8: Backwards Problem

F1. Is it easier to understand a maypole patterns when there are more or less pairs? For both
cases, explain which aspects of the pattern are harder or easier to understand.

F2. Is it easier to understand a maypole patterns when there are more or less colors? For both
cases, explain which aspects of the pattern are harder or easier to understand.

Let’s play a bit more with the possibilities of colors and patterns:

F3. Why does the ribbon pattern for BWBWBW look exactly the same as the ribbon pattern
for BWBWBWBW? Doesn’t that contradict our findings about fundamental domain sizes?

F4. Choose your own number of pairs and choose colors you like. Predict the maypole pattern.
Then dance the pattern to check your work. Take a picture. Reflect on how well you were
able to predict the pattern.

F5. Use paper strips to weave a dance pattern of your choice, similar to http://mrhonner.

com/2011/11/29/weavings-and-tilings/. What did you learn from this activity that you
did not know before about maypole dance patterns?

Let’s solve a few more maypole dance puzzles: Given a pattern, can you find the dance?

F6. Find the number of dancers and colors to dance the pattern in Figure 6.10.

F7. Find the number of dancers and colors to dance the pattern in Figure 6.9.

F8. Open Problem: Can you find a maypole dance that will give you the pattern in Figure 6.11?

F9. How many dance pattern are there given a number of pairs and a number of colors? (This
is a very big question to consider!)
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Figure 6.9: Pattern Puzzle 1

F10. Are there patterns (square-tilings) you can not create with a maypole dance? If not,
explain why not, If yes, find a counter example.

F11. What happens if you change the dance? Can you create different patterns from before?
Experiment with a few dances you invent.

6.4 Connections

47. Watch http://www.youtube.com/watch?v=5fEnF6daTYQ. Explain how maypole dancing is
similar and different from african basket weaving.

48. Explain how maypole dancing is connected to salsa rueda dancing and to machines that make
rope. Watch http://www.youtube.com/watch?v=8ECeP5lHFr4, and http://www.youtube.

com/watch?v=dER8DM3aYqk to learn about rope making.

49. Watch http://www.youtube.com/watch?v=G85f-C63CXg. Explain how maypole dancing is
connected to braid weaving.

50. Watch the Kumihimo KumiLoom Braiding Instructions at http://www.youtube.com/watch?
v=0RNbFjvZycs. Explain how maypole dancing is connected to contra dancing and Japanese
braiding.
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Figure 6.10: Pattern Puzzle 2

Figure 6.11: Find the dance?
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